COMMUNICABLE DISEASE CENTER

SURVEILLANCE

TABLE OF CONTENTS For the month of August 1966

- I. SUMMARY
- II. REPORTS OF ISOLATIONS FROM THE STATES
- III. CURRENT INVESTIGATIONS
- IV. REPORTS FROM STATES
- V. SPECIAL REPORTS
- VI. INTERNATIONAL
- VII. FOOD AND FEED SURVEILLANCE

PREFACE

Summarized in this report is information received from State and City Health Departments, university and hospital laboratories, the National Animal Disease Laboratory (USDA, ARS), Ames, lowa, and other pertinent sources, domestic and foreign. Much of the information is preliminary. It is intended primarily for the use of those with responsibility for disease control activities. Anyone desiring to quote this report should contact the original investigator for confirmation and interpretation.

Contributions to the Surveillance Report are most welcome. Please address to:

Chief, Salmonella Unit, Communicable Disease Center, Atlanta, Georgia 30333

Communicable Disease Center Epidemiology Branch Bacterial Diseases Section Epidemic Aid Laboratory Section Salmonella Unit

Statistics Section

Veterinary Public Health Section Veterinary Public Health Laboratory David J. Sencer, M.D., Chief Alexander D. Langmuir, M.D., Chief Theodore C. Eickhoff, M.D., Chief John R. Boring, Ph.D., Chief Albert R. Martin, M.D., Chief

Michael D. Treger, D.V.M. Steven A. Schroeder, M.D. L. Ariel Thomson, D.D.S.

Stanley M. Martin Richard C. Arnold

James H. Steele, D.V.M., Chief Mildred M. Galton, M.Sc., Chief

Collaborators

Laboratory Branch Bacteriology Section Enteric Bacteriology Unit

William H. Ewing, Ph.D., Chief

TABLE OF CONTENTS

		Page
I.	SUMMARY	1
II.	REPORTS OF ISOLATIONS FROM THE STATES	1
	A. Human	1
	B. Nonhuman	1
III.	CURRENT INVESTIGATIONS	2
	A. <u>Salmonella</u> <u>cubana</u> Infections Associated with Carmine Dye	2
	B. Interstate Outbreak of Gastroenteritis Due to Contamination of Smoked Whitefish with <u>Salmonella</u> java	4
	C. <u>Salmonella</u> typhi-murium Contamination of Barbecued Chickens	6
	D. Progress Report - Interstate Outbreak of Salmonellosis Related to Nonfat Dry Milk	7
IV.	REPORTS FROM THE STATES	9
	A. Georgia - <u>Salmonella</u> <u>heidelberg</u> Outbreak in a Newborn Nursery	9
	B. New York - Hospital Outbreak of Salmonella enteritidis	10
٧.	SPECIAL REPORTS	10
	A. Progress Report - Salmonella Contamination of Drug Substances of Animal Origin	10
	B. Ampicillin in the Treatment of Salmonella Carriers	11
VI.	INTERNATIONAL	13
	NONE	
VII.	FOOD AND FEED SURVEILLANCE	13
	A. Progress Report on Food and Feed Surveillance Program	13
	B. Salmonellosis in Kansas	13

I. SUMMARY

This issue of the Salmonella Surveillance Report includes a discussion of the June 1966 interstate epidemic caused by smoked whitefish contaminated with <u>Salmonella</u> java and a report of contamination of carmine dye with <u>Salmonella</u> cubana. A discussion of the use of ampicillin in the treatment of salmonella carriers and a follow-up report from the Food and Drug Administration concerning salmonellae in drug substances of animal origin are included in Special Reports.

In August there were 2,408 isolations of salmonellae reported from humans, an average of 482 isolations per week. This number represented an increase of 74 (18.1 percent) over the weekly average during July 1966 and an increase of 10 (2.1 percent) over the weekly average of August 1965. The cumulative total of reported isolations for the first 8 months in 1966 (12,915) represents a 1.2 percent decrease from the total reported for the same period in 1965 (13,067).

There were 863 nonhuman isolations of salmonellae in August, an increase of 352 from July.

II. <u>REPORTS OF ISOLATIONS FROM THE STATES</u>

A. Human

The seven most frequently reported serotypes during August were:

Rank	Serotype	Number	Percent	Rank Last Month
1	<u>S</u> . <u>typhi-murium</u> and <u>S</u> . <u>typhi-murium</u> <u>var</u> .	778	32.3	1
2	S. heidelberg	194	8.1	2
3	S. <u>newport</u>	186	7.7	4
4	<u>S. infantis</u>	125	5.2	5
5	S. enteritidis	107	4.4	3
6	S. thompson	98	4.1	7
7	S. saint-paul	96	4.0	6
	Total	1,584	65.8	
	Total (all serotypes)	2	,408	

The age and sex distribution (Table III) has continued as in the past.

B. Nonhuman

Thirty-five states reported nonhuman isolations, represented by 57 different serotypes.

The seven most frequently reported serotypes during August were:

Rank	<u>Serotype</u>	Predominant Source and Number	Number	Percent	Rank Last Month
1	S. typhi-murium and	Chicken (67),	152	17.6	1
	S. typhi-murium var.	Turkey (16), and			
	copenhagen	Bovine (15)			
2	S. heidelberg	Turkey (43) and	78	9.0	2
		Chicken (21)			
3	S. anatum	Turkey (18),	48	5.6	3
		Sewage (7), and			
		Thyroid powder (6)			
4	S. schwarzengrund	Turkey (44)	47	5.4	4
5	S. tennessee	Powdered milk (32)	44	5.1	5
6	S. derby	Yeast (19),	38	4.4	Not listed
		Turkey (4),			
		Sewage (4), and			
		Thyroid powder (4)			
7	S. thompson	Noodles (22) and	38	4.4	Not listed
		Chicken (5)			
	Total		445	51.5	
	Total (all serotypes)		863		

The most prominent nonhuman sources of salmonellae reported during August were turkeys, 201 (23.3 percent); chickens, 152 (17.6 percent); livestock feed, 61 (7.1 percent); powdered milk, 57 (6.6 percent); frozen eggs, 32 (3.7 percent); and animal feed, 29 (3.4 percent).

III. CURRENT INVESTIGATIONS

A. <u>Salmonella cubana</u> Infections Associated with Carmine Dye. Reported by David J. Lang, M.D., and Lawrence J. Kunz, Ph.D., Boston, Massachusetts, the California and Massachusetts Departments of Public Health, the Portland City Health Department, Dr. B. Moore, Chief, Public Health Laboratory, Exeter, England, and the U.S. Food and Drug Administration.

An outbreak of <u>Salmonella cubana</u> infections in a Massachusetts hospital has been found associated with carmine dye used for the investigation of gastrointestinal function (MMWR, 1966, Vol. 15, No. 33). Investigation of the outbreak was initiated by the hospital when it was noted that <u>S</u>. <u>cubana</u> accounted for a disproportionate number of salmonella isolations from clinical specimens submitted to the hospital laboratory. From January 1966 to July 1966 there were 23 isolates of <u>S</u>. <u>cubana</u>, comprising 22.9 percent of all salmonella isolates at the hospital. Of the patients with <u>S</u>. <u>cubana</u> infection, 11 had received capsules of carmine dye, 5 were patients on the same ward as those who had taken the dye, and 1 was a nurse on the ward. The remaining patients had no known association with carmine dye.

Seven additional cases related to carmine dye have been reported in the United States. Six cases occurred at a medical center in California and 1 in a hospital in Oregon. In addition, 6 cases of <u>S</u>. <u>cubana</u> infection have been traced to ingestion of carmine dye in Exeter, England.

Carmine is a red dye commonly used in the investigation of gastrointestinal function. It is employed as an aid in the measurement of bowel transit time, collection of timed fecal specimens, and demonstration of fistulae. Carmine was listed in the National Formulary until 1950, when it was dropped. Despite this, the dye is still recommended for diagnostic tests in a number of medical textbooks¹⁻³.

Salmonellae were cultured from stock bottles of carmine in the hospitals in Massachusetts, California, Oregon, and Exeter, England. In every instance the contaminating serotype was found to be \underline{S} . <u>cubana</u>.

Intensive investigation has been initiated by the U.S. Food and Drug Administration and the Communicable Disease Center to determine the source of contamination. Carmine dye is produced from the cochineal insect of the species <u>Coccus cacti</u>. The insects live on cactus plants in tropical areas and at present are exported primarily from Peru and the Canary Islands. The dye is then produced in the United States and in several European countries including England, France, and Germany. Group G salmonellae (the group into which <u>S. cubana</u> is classified) have been cultured from shipments of cochineal from Peru and the Canary Islands as well as from manufactured carmine dye in this country and England. At the present time it is not known whether contamination with this uncommon serotype originates with the live insect or occurs at some time during processing.

Though <u>S</u>. <u>cubana</u> is an uncommon serotype, the absolute number and relative frequency of human isolations in this country have been increasing as seen in the table below.

Incidence of Salmonella cubana Among Salmonella Isolates

Year	Total Salmonella Isolates	<u>S</u> . <u>cubana</u>	Percent
1963	18,649	40	0.2
1964	21,113	63	0.3
1965	20,865	145	0.7
1966*	10,507	95	0.9

*January through July 1966.

It has also been observed that \underline{S} . <u>cubana</u> infections tend to occur in young children as shown below.

Age Distribution of <u>Salmonella</u> <u>cubana</u> Infections Compared with All Salmonella Serotypes, January - July, 1966

	<u>S. cubana</u>		<u>A11</u>	Serotypes
Age	Percent	Cumulative %	Percent	Cumulative %
< 1	27.5	27.5	17.1	17.1
1 - 4	33.3	60.8	26.5	43.6
5 - 9	7.8	68.6	13.1	56.7
10 - 19	9.8	78.4	9.2	65.9
20 - 39	9.8	88.2	13.6	79.5
40 - 59	7.8	96.0	11.3	90.8
60 - 79	3.9	99.9	7.7	98.5
80 +	0.0	99.9	1.5	100.0

The extent to which contaminated carmine dye has been responsible for this increase is not known. Epidemiologic investigation of all new cases of <u>S</u>. <u>cubana</u> as well as the 95 cases reported to date this year, would help to determine more clearly the importance of carmine dye as a vehicle for salmonella infections.

REFERENCES

- Page, Lot B. and Culver, Perry J.: <u>A Syllabus of Laboratory Examinations in</u> <u>Clinical Medicine</u>. Harvard University Press, Cambridge, 1960, p. 374.
- Cole, Warren H. and Zollinger, Robert M.: <u>Textbook of Surgery</u>, Eighth Edition. Appleton-Century-Crofts, New York, 1963, p. 744.
- Bockus, Henry LeRoy: <u>Gastroenterology</u>, Volume 2. W. B. Saunders, Philadelphia and London, 1964, p. 493.
 - B. Interstate Outbreak of Gastroenteritis Due to Contamination of Smoked Whitefish with <u>Salmonella</u> java. Information compiled by health authorities in New Jersey, New York, Pennsylvania, Canada, and Epidemiology Branch, Communicable Disease Center.

On May 31, 1966, an outbreak of febrile gastroenteritis occurred among guests who had attended a bar mitzvah party in Edison, New Jersey, the previous evening. Illness included symptoms of diarrhea with abdominal cramps, nausea, vomiting, fever as high as 104°, dehydration, and general prostration, and lasted from 2 to 10 days. A few patients were hospitalized; there were no deaths.

The bar mitzvah was catered, and as many as 30 food items had been served, but available information pointed to 1 item, smoked whitefish, as the source of infection.

Attack Rates of Febrile Gastroenteritis As Related to Whitefish Ingestion

Smoked Whitefish	<u>111</u>	Not Ill	Total	Attack Rate
Ate	34	11	45	76%
Did not eat	0	69	69	0%

More than 12 similar outbreaks occurred during the Memorial Day weekend, involving over 300 people located in metropolitan areas of New York, New Jersey, and Philadelphia. All cases were among Jewish people who had eaten smoked whitefish at social and religious gatherings. <u>Salmonella</u> java was the organism isolated from stool cultures of involved persons and from the whitefish served at the various affairs.

The contaminated whitefish had been smoked and distributed by a fish processing plant in New York. On April 1, 1966, the plant was seriously damaged by fire. Major plumbing and structural repairs were made from the time of the fire to just before the outbreak, and while repairs were being made, there was some decrease in refrigerator and freezer space.

No known gastrointestinal illness had occurred among the employees of the plant prior to the outbreak, but 2 did become ill at about the time that it began. In addition, stool cultures from 11 of 30 workers sampled after the outbreak were positive for <u>S</u>. <u>java</u>. None of these people were directly involved in processing whitefish, but it was common knowledge that many of the workers ate the product themselves.

Numerous environmental cultures were obtained as part of a complete examination of the plant operation. All of these were negative; however, cultures taken from the skin and flesh of raw unprocessed whitefish from the same lot responsible for the outbreak did yield <u>S</u>. <u>java</u>. Two later shipments of whitefish from the same source, which had arrived in unopened boxes in June and July of 1966, were cultured and yielded <u>S</u>. <u>java</u>. This data indicated that the raw fish were the source of contamination. Salmonellae on the fish may not have been destroyed by routine cooking and smoking processes and might have been allowed to multiply because of inadequate refrigeration and storage facilities after the fire.

The whitefish were obtained from Hay River, Great Slave Lake, Northwest Territory, Canada, where they were dressed, frozen, and shipped. With the assistance of Canadian health authorities, the shipment involved in the epidemic was traced. The fish were caught before December 1965, were dressed (eviscerated and beheaded), and placed in containers. Thirty-one containers, each weighing 75 pounds, were sent to the United States and distributed. Only 4, delivered to the involved processing plant on May 24, were the source of whitefish involved in the outbreak.

The town of Hay River has a population of about 3,000 and is located at the mouth of the river by the same name where it empties into the Great Slave Lake. The town serves as the transportation and communication center for the vast subarctic MacKenzie District. The river flows north and bifurcates south of the town forming a west and east channel. There are four fishing companies in Hay River, supplying major markets in the United States and to a lesser extent in Canada. Two of the 3 shipments of contaminated whitefish received by the New York plant from Hay River, including the shipment responsible for the 3-state epidemic, were traced to a company located on the shore of the east channel of the Hay River. The third shipment was traced to one of three other companies located along the west channel.

There is no central sewage disposal system in the town, and provisions for sewage disposal are inadequate. Numerous drains run into the river carrying contaminated material. Much of the water supply for the town is obtained from the lake into which the river channels flow, 40 ft. below the surface of the water, but this system has been in operation for only a few months. The only other sources of water are the river and the lake shore. At the time of the investigation, the water supply was not chlorinated.

Although there had been no recent outbreaks of salmonellosis in Hay River, 3 epidemics of enteritis due to <u>Salmonella paratyphi</u> <u>B</u> had occurred in different communities on Great Slave Lake in 1950, 1951, and 1952. It is conceivable that these were actually <u>Salmonella java</u>, as the differentiation of the two organisms depends on a single biochemical test.

The fish processing operations vary with the season of the year. In all seasons, the fish are packed in ice which comes from river or lake water. In the spring, the fish are washed directly with the river water after being dressed.

Efforts were made to find a common factor which would explain contamination of fish with the same organism from two different companies physically separated by several miles and on separate branches of the river. The processing of fish in each plant was reviewed. Numerous ice, water, and other environmental cultures were obtained from all plants, and all available personnel from one of the companies were cultured by rectal swabs. All bacteriologic cultures were negative for salmonellae except for one water sample near the intake hose of a company in the west channel, which was positive for \underline{S} . typhi-murium. High coliform counts had been found in water from the river in the past and from samples during the current investigation.

One common factor which could explain contamination may be the use of raw, untreated river water for washing fish after dressing and for making ice used in packing. The possibility exists that <u>S</u>. java may have contaminated this water at a point before the bifurcation of the river, possibly due to sewage from the town. This possibility could not be documented.

Though the exact source of contamination could not be determined, health authorities have made the following recommendations. It was suggested that the town water supply be piped to all of the fish companies and that all water used in washing and icing fish be chlorinated. It was also recommended that hand-washing and toilet facilities at each of the four plants be improved.

C. <u>Salmonella typhi-murium</u> Contamination of Barbecued Chickens - Spokane, Washington. Reported by Dr. Ernest A. Ager, Washington State Epidemiologist; Mr. Jack Allard, Assistant Epidemiologist, Washington State Department of Health; Dr. S. Ben Werner, EIS Officer; Dr. Hampton H. Trayner, Spokane City Health Department; and Mr. Roy Olsen, Sanitarian Supervisor, Spokane City Health Department.

An outbreak of gastroenteritis involving 107 persons in eastern Washington occurred during July 1966. The outbreak included 29 different family groups and resulted in hospitalization of 29 persons and the deaths of 2 elderly patients. Salmonella typhi-murium was isolated from 74 individuals in this outbreak.

Most of the 107 patients were acutely ill, and 79 sought treatment from physicians. The symptoms reported during the illness included the following:

Diarrhea	94%	Chills	74%
Cramps	90%	Nausea	71%
Fever	83%	Headache	68%
Myalgia	75%		

One hundred eighty-three people from the various family groups were interviewed. Food histories revealed an association with eating barbecued chickens in all but one family. A Spokane supermarket was the source of the barbecued chickens in most instances and in addition had sold ice cream to one family which had not eaten chicken. Of the 106 that had consumed barbecued chicken, 88 became ill and 5 others had <u>S</u>. <u>typhi-murium</u> isolated although they were asymptomatic.

Barbecued Chickens	<u>111</u>	Not Ill	Total	<u>Attack Rate</u>
Ate	88	18	106	83%
Did not eat	16	_50_	66	24%
Total	104	68	172	

Only 16 of the 66 who did not eat barbecued chicken became ill. Three children in this group had eaten ice cream dipped by the same employee who cooked and sold the barbecued chickens at the supermarket. Many of the others seemed to have been secondary cases related to family members who had eaten chicken and became ill. <u>Salmonella</u> <u>typhi-murium</u> was obtained from chicken leftovers obtained from 6 families and also from 3 packaged chickens ready for sale at the supermarket.

Investigation of the food handling operations and practices at the involved store revealed many deficiencies. The barbecuing oven was found to bring the internal temperatures of the chicken to only 150° . The holding oven (warmer) for cooked chickens kept them at temperatures of only 110° instead of 150° . The barbecued chickens were placed on the same surfaces as uncooked ones, and unpurchased birds were refrigerated and warmed again for sale the next day.

As a result of these findings, the barbecuing operations at supermarkets throughout Spokane have been temporarily suspended by the Spokane City Health Department. Meetings are being scheduled with the manufacturers and distributors of the barbecuing machines, and an educational program will be drawn up for those using these machines.

D. Progress Report - Interstate Outbreak of Salmonellosis Related to Nonfat Dry Milk. Compiled by the Salmonella Unit from reports received from State Departments of Agriculture and Health, U.S. Department of Agriculture, and the Food and Drug Administration.

Since August 15, 1966, 3 isolations of <u>Salmonella</u> <u>new-brunswick</u> from humans have been reported to the Salmonella Unit.

Isolation No.	Age	Sex	State	Exposure to INFDM
1	10 mo.	М	Alaska	Yes
2	9 mo.	м	New York	Yes
3	28 yr.	М	New York	Yes

The following table summarizes the results of investigations of dried milk products and companies since August 15, 1966.

Serotype	Source	Location of Plants	Reporting Agency
<u>S. alachua</u> and <u>S. tennessee</u>	Environment	Indiana	FDA
S. alachua	NFDM with sugar added	Indiana	FDA
S. cubana	NFDM	Minnesota	FDA
S. cubana	NFDM	Oklahoma	FDA
S. cubana	NFDM	Washington	Washington State
			Health Department
S. oranienburg	NFDM	New York	FDA
<u>S. tennessee</u>	Chocolate drink mix	Minnesota	FDA
None isolated	NFDM	Multiple plants	Alabama State Health Department
None isolated	NFDM	Multiple plants	Indiana State Health Department
Untyped Salmonella	NFDM	Nebraska	FDA

The Dairy Division, Consumer and Marketing Service, United States Department of Agriculture, has included testing for salmonellae as part of their detailed inspection of milk-drying plants. From April through August 31, 1966, 2,741 samples from 156 plants located in 23 states were tested for salmonellae. A total of 34 samples of nonfat dry milk (not instantized) and 27 environmental samples were positive.

The plant survey for salmonella includes taking 15 samples of nonfat dry milk from each plant's current production and 5 samples of environmental material. The environmental samples are nonfat dry milk spilled on the floor, vacuum cleaner wastes, tailings from the sifter, dried material in milk-drying equipment, air intake filter, and dust from the roof and various areas inside the plant. When a plant has positive samples, recommendations are made to the plant manager, who is urged to make the necessary changes as soon as possible and to apply for a recheck of his plant as a provision of maintaining plant approval. Recheck samples taken to date indicate that clean-up procedures have been very successful. The results of testing by the U.S. Department of Agriculture are summarized in the following table.

	No. of Plants	Number of Positive	
Location of Plants	Surveyed	Samples and Source	Serotype
Arizona	1	None	None
California	10	None	None
Connecticut	1	None	None
Idaho	4	6 NDM	Not serotyped
Iowa	18	3 plant environment	S. schwarzengrund
		2 plant environment	S. tennessee
		2 plant environment	S. <u>newport</u>
		7 NDM	Not serotyped
		l plant environment	Not serotyped
Kansas	3	None	None
Kentucky	2	None	None
Maryland	1	None	None
Massachusetts	1	None	None
Michigan	1	None	None
Minnesota	56	1 NDM	S. montevideo
			S. oranienburg
		2 plant environment	S. cubana
		l plant environment	S. typhi-murium
		2 -1 and another and	var. copennagen
		2 plant environment	<u>S. anatum</u>
		2 plant environment	S. worthington
		1 plant environment	S. schwarzengrund
		11 NDM	Not servicyped
Minouri	3	1 plant opwironment	Not serotyped
Nobracka	3	None	None
New York	13	None	None
North Dakota	1	1 plant environment	Not serotyped
Obio	4	None	None
Oklahoma	1	2 plant environment	S. kentucky
Ponneylyania	4	None	None
South Dakota	5	1 plant environment	Not serotyped
bouth barota	5	1 NDM	Not serotyped
Vermont	3	1 plant environment	Not serotyped
Virginia	1	None	None
Washington	9	1 NDM	Not serotyped
abiringcon	,		the second per

Location of Plants	No. of Plants Surveyed	Number of Positive Samples and Source	Serotype
Wisconsin	37	l plant environment l plant environment 6 NDM 2 plant environment	<u>S. tennessee</u> <u>S. infantis</u> Not serotyped Not serotyped

IV. <u>REPORTS FROM THE STATES</u>

A. Georgia

<u>Salmonella heidelberg</u> Outbreak in a Newborn Nursery. Reported by Robert A. Hatcher, M.D., Epidemic Intelligence Service Officer.

A <u>Salmonella heidelberg</u> outbreak occurred in the newborn nursery of a Georgia hospital in August 1966. The first case was a premature infant who became febrile July 30, 1966, 2 days after birth. A stool culture obtained from the infant on August 1, 1966, revealed <u>S</u>. <u>heidelberg</u>. The child's mother had had diarrhea without fever 4 days prior to the birth. On July 31, 1966, the mother was discharged from the hospital only to return that evening with a temperature of 103° . She subsequently became quite ill, and on August 6, 1966, a culture of her blood produced <u>S</u>. <u>heidelberg</u>.

Three additional premature infants in the same nursery developed diarrhea early in August, 2 to 5 days after the onset of the case described above. Stool cultures from 2 of the 3 infants contained <u>S</u>. <u>heidelberg</u>. The 14 other infants in the newborn nursery did not develop salmonella infection.

As soon as the outbreak was apparent, all of the nurses working in the newborn area submitted stool cultures. <u>Salmonella heidelberg</u> was isolated from one nurse, who was on temporary duty (July 29 to August 5) in the newborn area and worked primarily with the premature infants.

The following precautions were instituted when the outbreak started and undoubtedly reduced its extent:

- 1. Infants with infection were removed from the newborn area and placed in isolation.
- 2. No new patients were admitted into the newborn unit until all patients present at the time of the outbreak had been sent home.
- 3. No new patients were admitted to full-term nursery (adjacent to the newborn nursery) until all patients present at the time of the outbreak had been discharged.
- 4. All newborn infants were placed in a separate newly established area.
- 5. Strict hand-washing techniques were enforced.

There were no new cases of <u>S</u>. <u>heidelberg</u> diarrhea after August 6, 1966. It was felt that the mother of the first infant was the index case and infected her premature infant at the time of delivery. The transmission within the nursery was thought to have been effected by the nurse working with the infants from whom <u>S</u>. <u>heidelberg</u> was isolated.

Editor's <u>Comment</u>: The extreme susceptibility of young children to salmonella infection makes any such infection in a nursery quite a serious occurrence. This is one situation where person-to-person transmission is probably quite important. B. New York

Hospital Outbreak of <u>Salmonella</u> enteritidis. Reported by Paul D. Ellner, M.D., and C. R. Wise, M.D., New York.

Forty cases of gastroenteritis occurred in employees and patients at a New York hospital between July 5 and 10, with the majority (29) taking place between 2 P.M., Wednesday, July 6, and 11 A.M., Thursday, July 7. Symptoms included abdominal cramps, nausea, vomiting, chills, and fever and persisted for several days. Stool cultures were positive for <u>Salmonella enteritidis</u> in 37 of the cases.

Hospital authorities reasoned that the usual incubation period in salmonella gastroenteritis is 12 to 24 hours. They extrapolated back approximately 18 hours from midnight Wednesday and concluded that the infections most probably had occurred during the Wednesday morning meal. Their suspicions were verified when food histories showed that 33 of the 34 people who had become ill between July 6 and the morning of July 8 had eaten scrambled eggs for breakfast in the hospital cafeteria on Wednesday. Twenty-two of these individuals had eaten their breakfast at counter #1, 10 at counter #2, and 1 person was unable to remember. Furthermore, the server on counter #2 had "run out of scrambled eggs" that morning and had "borrowed about 10 portions" from counter #1 while waiting for the supply to be replenished. Representative batches of the shipment of eggs that had been used were cultured and were negative for salmonella. Stool cultures were obtained from all food handlers, and 1 individual was positive for <u>S</u>. enteritidis, the same person who had been serving scrambled eggs at counter #1 on the morning of July 6.

It seems likely that the outbreak was due to a common source contamination of the scrambled eggs. No further cases have occurred since early July.

<u>Editor's Comment</u>: While it is not possible to document whether the original contamination came from infected eggs or the food handler, it is much more common for such epidemics to originate with contaminated food. It would be difficult for the server to contaminate the eggs at the serving line so heavily as to infect so many people. Therefore, the raw eggs must be suspected as the original source of contamination.

V. SPECIAL REPORTS

A. Progress Report - Salmonella Contamination of Drug Substances of Animal Origin. Reported by the Food and Drug Administration.

Since the initial report of salmonella contamination of thyroid powder, pancreatic, adrenal cortical, lymphatic substances (SSR #51), additional serotypes have been isolated and reported by the Food and Drug Administration. These isolations were obtained from bulk material originating in several states and from Italy, Canada, Argentina, Denmark, and Uruguay. Salmonellae were also isolated from one lot of thyroid tablets, which have been subsequently recalled from the market. The list of serotypes isolated to date include the following:

Thyroid Powder	<u>s</u> .	anatum	<u>s</u> .	manhattan
	<u>s</u> .	bareilly	<u>s</u> .	newport
	<u>s</u> .	bovis-morbificans	<u>s</u> .	oranienburg
	<u>s</u> .	derby	<u>s</u> .	senftenberg
	<u>s</u> .	heidelberg	<u>s</u> .	typhi-murium
	<u>s</u> .	infantis		

Pancreatic Substance:	<u>s</u> .	anatum	Adrenal Cortical Substance: S. derby	
	5.	tennessee	Lymphatic Substance: S. concor S. newpor	d t
Pancreatic, N.F.:	<u>s</u> .	urbana	Glandular Pensin: Group B Salmonella	

<u>Editor's Comment</u>: It is hoped that cases of salmonella infection in patients taking these medications will be thoroughly investigated in order to help determine the public health importance of their contamination.

B. Ampicillin in the Treatment of Salmonella Carriers

Carriers of salmonella, particularly <u>Salmonella typhi</u>, constitute a threat to the health of their family members and the community. Consequently, numerous attempts have been made to find a means of adequately treating the salmonella carrier. Though many antibiotics have been useful in treating more serious manifestations of salmonella infection, antibiotics have not been generally successful in eliminating these organisms from the gastrointestinal tract¹. In the last 4 years, because of its excellent <u>in vitro</u> activity against salmonella organisms, alpha-aminobenzyl penicillin (ampicillin) has been used for the treatment of carriers in a number of clinical trials and has been widely used by practicing physicians. It is the purpose of this article to review some of the results of these trials. The first studies to be discussed will be those concerned with carriers of salmonella, excluding <u>S</u>. <u>typhi</u>.

Salmonellae, other than <u>S</u>. <u>typhi</u>, are seldom excreted in the stool for periods longer than a few weeks to a few months². Because of this, and because the duration of the carrier state will depend to some extent on the age and general health of the patient, it is important that any clinical trial be carefully controlled by the comparison of a treated and untreated group. Unfortunately, most of the clinical trials with ampicillin have not been controlled and include only small numbers of patients.

One of the first studies was that of Stewart, <u>et al.</u>, who treated 6 patients (5 carriers and 1 with active infection) with <u>Salmonella typhi-murium</u> infection³. In all cases, the organism disappeared from the stool during treatment but was again cultured immediately after the cessation of therapy. Another uncontrolled trial, which included 11 infants with <u>Salmonella newport</u> infection, had similar results⁴. The newborn infants were treated with substantial doses (50 to 150 mg per kg) of oral ampicillin for 7 to 45 days (mean 20.2 days). All but 1 showed temporary clearing of their stools while on therapy, but 9 of 11 again began excreting <u>S</u>. <u>newport</u> within 1 month after treatment stopped. Ten of the infants then submitted stool specimens periodically over the following 12 months while on no therapy. Only 1 was still excreting the organism after that time.

The only controlled study reported thus far in the English literature is that of Pettersson, <u>et al.</u>⁵, who used a combination of ampicillin and neomycin after preliminary trials indicated that ampicillin alone would not terminate the carrier state. Fifty-one patients with acute salmonella gastroenteritis were divided into a treatment group (29 patients) and a control group (22 patients). Therapy with oral ampicillin and neomycin was initiated at least 3 days after the cessation of acute symptoms. Immediately after treatment, 20 of the 29 in the treatment group and 18 of 22 in the control group were still excreting salmonellae. Two months after therapy, 7 of 29 treated patients and 10 of 22 untreated patients excreted salmonellae. The differences are not statistically significant.

Two other trials are reported but include too few patients to be meaningful⁶,⁷. A single report gave somewhat more favorable results with 10 of 17 patients developing negative stool cultures after ampicillin treatment, but this trial too included no control group⁸. Minor side reactions such as pruritis, urticaria, and gastrointestinal upset were noted by patients in many of the trials, but there were no serious complications of therapy.

There is, therefore, very little evidence indicating that treatment with ampicillin has been successful in curing carriers of salmonella other than <u>S</u>. <u>typhi</u>. When this is viewed with the fact that the carrier state is usually self limiting, that it seldom causes the patient difficulty, and that any antibiotic has a certain incidence of side reactions, it is difficult to recommend this use of the drug.

Somewhat more attention has been devoted to the treatment of carriers of S. typhi, a potentially more dangerous organism and one which is seldom spontaneously cleared from the stool. Ampicillin, as a bactericidal drug which is concentrated in the gallbladder in an active form, seems particularly appropriate for treating typhoid carriers. Early attempts to treat typhoid carriers with ampicillin were unsuccessful, but relatively small amounts were used9. In two trials, when low doses were not effective, a higher dose for a longer period of time yielded better results^{10,11}. Merselis' studies suggested that ampicillin was less successful in curing patients with clinically demonstrable gallbladder disease¹², whereas among Christie's patients the presence of gallstones or a radiographically nonfunctioning gallbladder made no difference¹³. The most complete report is that recently published by Simon and Miller¹⁴. Fifteen long-term typhoid carriers were treated with 50 to 100 mg per kg oral ampicillin daily for a total of at least 28 days. Eleven of the patients had gallbladder disease. Treatment was successful in producing negative stool cultures in 13 of the 15 patients with follow-up period ranging from 7 to 54 months. Ten of the 11 patients with gallbladder disease were among the successful group.

In conclusion, though ampicillin has not been successful in eliminating carriers of other types of salmonella, it may be of real value in the typhoid carrier. If future investigation supports the evidence of these preliminary trials, ampicillin therapy may be an alternative to cholecystectomy in some chronic typhoid carriers.

REFERENCES

- Dixon, J.M.S.: Effect of antibiotic treatment on duration of excretion of <u>Salmonella</u> typhi-murium by children, Brit. Med. J., <u>2</u>:1343, 1965.
- Dubos, R. J., and Hirsch, J. G.: <u>Bacterial and Mycotic Infections of Man</u>, Fourth Edition. J. B. Lippincott Company, 1965.
- Stewart, G. T., Coles, H.M.G., Nixon, H. H., and Holt, R. J.: "Penbritin": An oral penicillin with broad spectrum activity, Brit. Med. J., <u>2</u>:200, 1961.
- Abroms, I. F., Cochran, W. D., Holmes, L. B., Marsh, E. B., and Moore, J. W.: <u>A Salmonella newport</u> outbreak in a premature nursery with a 1 year follow-up, Pediatrics, <u>37</u>:616, 1966.
- Pettersson, T., Klemola, E., and Wager, O.: Treatment of acute cases of salmonella infection and salmonella carriers with ampicillin and neomycin, Acta Med. Scand., <u>175</u>:185, 1964.
- Kennedy, W.P.U., Wallace, A. T., and Murdoch, J. McC.: Ampicillin in the treatment of certain gram-negative bacterial infections, Brit. Med. J., <u>2</u>:962, 1963.
- Anderson, K. N., Kennedy, R. P., Plorde, J. J., Shulman, J. A., and Petersdorf, R. G.: Effectiveness of ampicillin against gram-negative bacteria, J.A.M.A., <u>187</u>:555, 1964.
- Ross, S., Everett, W. L., Zaremba, E. A., Bourgeois, L., and Puig, J.: Alpha-aminobenzyl penicillin - New broad spectrum antibiotic, J.A.M.A., 182:238, 1962.

- 9. Bullock, W. E.: Ampicillin therapy of salmonella carriers A summary of laboratory and clinical observations, Am. J. Med. Sci., <u>246</u>:42, 1963.
- Whitby, J.M.F.: Ampicillin in the treatment of <u>Salmonella</u> <u>typhi</u> carriers, Lancet, <u>2</u>:71, 1964.
- 11. Troy, P.: Ampicillin for typhoid carriers, Brit. Med. J., 2:756, 1964.
- 12. Merselis, J. G., Jr., Kaye, D., Connolly, S. C., and Hook, E. W.: The typhoid carrier state: Quantitative bacteriology and preliminary observations on therapy, E. Afr. Med. J., 41:219, 1964.
- Christie, A. B.: Treatment of typhoid carriers with ampicillin, Brit. Med. J., <u>1</u>:1609, 1964.
- Simon, H., and Miller, R. C.: Ampicillin in the treatment of chronic typhoid carriers: Report on 15 treated cases and a review of the literature, New Engl. J. Med., <u>274</u>:807, 1966.

VI. INTERNATIONAL

NONE

VII. FOOD AND FEED SURVEILLANCE

A. Progress Report on Pilot Food and Feed Surveillance Program

During August, 191 samples of cake mixes from 8 states were examined by the Veterinary Public Health Laboratory for salmonellae, shigellae, <u>Escherichia</u> <u>coli</u>, and coagulase positive staphylococci. Twenty-four brands were represented. Common constituents of these cake mixes were sugar, flour, cocoa, leavening, nonfat dry milk, dried eggs, fats, whey, spices, and flavoring. One sample was found positive for <u>E</u>. <u>coli</u>, whereas all other samples were negative for these four organisms. Five samples of cocoa mix were also examined for the above organisms and one was positive for <u>E</u>. <u>coli</u>. One package of dog biscuits was examined and found negative for salmonellae.

B. Salmonellosis in Kansas, 1954 - 1965 Reported by G. A. Mullen, Jr., D.V.M., M.P.H., Chief Veterinarian, Food and Drug Division, Flora McKinley, M.S., Chief Bacteriologist, Public Health Laboratories, and Nicholas Duffett, Ph.D., Director, Division of Laboratories, Kansas State Department of Health.

During the ll-year period from July 1, 1954, to June 30, 1965, the Division of Laboratory Services of the Kansas State Department of Health reported 3,032 isolations of salmonella from 103,395 specimens examined.

During the period 1954 to 1960 the isolations were primarily from human sources. The Veterinary Diagnostic Laboratory was organized in the School of Veterinary Medicine at Kansas State University in 1960. Salmonella isolations made from specimens collected at this laboratory are referred to the Public Health Laboratories for serotyping. As a result, more animal isolations have been made in the past 5 years.

In the 5-year period, July 1, 1960, to June 30, 1965, the Kansas Public Health Laboratories examined 58,936 samples and recovered salmonella from 2,605 as follows:

- 2,173 isolations were from human sources and represented 1,065 infected individuals
 - 354 isolations were from animals and poultry
 - 76 isolations were from food
 - 2 isolations of <u>Salmonella</u> <u>typhi-murium</u> were made from creek water in 1964

A total of 61 different serotypes were recovered from all sources. Of these, 23 were found both in man and in animals or food products. The 10 most common types isolated from human and nonhuman sources are given in the following table.

Ten Most Common Salmonella Types Isolated In Kansas from Human and Nonhuman Sources 1954-1965

	HUMAN		NONHUM	AN
	Serotype	Number	Serotype	Number
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	S. <u>typhi-murium</u> <u>S. oranienburg</u> <u>S. typhosa</u> <u>S. newport</u> <u>S. newington</u> <u>S. muenchen</u> <u>S. infantis</u> <u>S. thompson</u> <u>S. saint-paul</u> S. paratyphi B	777 268 162 113 113 (7)* 75 75 65 (3) 41 (5) 36	<u>S. tennessee</u> <u>S. bredeney</u> <u>S. newport</u> <u>S. oranienburg</u> <u>S. muenchen</u> <u>S. infantis</u> <u>S. typhi-murium</u> <u>S. litchfield</u> <u>S. blockley</u> S. derby	54 (29)** 51 (7) 42 41 41 40 33 14 (19) 11 (8) 9 (5)

*Numbers in parentheses are those isolated from nonhuman sources. **Numbers in parentheses are those isolated from human sources.

<u>Salmonella typhi-murium</u> isolations were highest during the 1962-1963 period when an outbreak occurred in Wichita. After a political dinner attended by over 1,200 persons, over 400 reported illness. It was determined that the turkey and gravy were the source of the <u>S</u>. <u>typhi-murium</u>. The caterer was not equipped to feed this many people. The turkey was cooked at low temperatures over a long period of time. Part of it was cooked at least 2 days ahead of time. The turkeys came from at least three known sources. Samples were taken for culture from equipment, dressed turkeys, and live turkeys on the farm. Although 13 different serotypes of salmonellae were isolated, none were <u>S</u>. <u>typhi-murium</u>. Investigations undertaken by the Wichita-Sedgwick County Health Department revealed that one of the women cooks was carrying <u>S</u>. <u>typhi-murium</u>. It could not be determined whether she was the source of infection or was infected from eating the food.

In August 1963, an outbreak of illness occurred in a nursing home adjacent to the County Hospital in Wichita. Salmonella infantis and <u>Salmonella braenderup</u> were isolated from stools cultured from patients. The source was thought to be raw eggs which were being given the patients in eggnog. Eggs came from two whole-salers, who purchased eggs from three dealers, who in turn purchased eggs from hundreds of farms in the area. Eggs were purchased from some of these sources and cultured in pools representing six farms. <u>Salmonella braenderup</u> was isolated from two pools sampled. At the involved farms, eggs and fecal material from poultry and other livestock were cultured, and <u>S. braenderup</u> was found at two

farms. Feed on the two farms was also checked, but at that time they were not feeding any animal protein, and <u>S</u>. <u>braenderup</u> was not isolated. Neither was this type among the 9 serotypes recovered from samples cultured from rendering plants.

Another recent outbreak involved 12 people near Liberal, Kansas, who were found infected with <u>S</u>. <u>typhi-murium</u>. They had been drinking raw milk from a milk station set up outside the city to evade the city's grade A all-pasteurized milk ordinance. Milk samples taken did not reveal salmonella; however, it was reported that the people operating the milk station had a cow at the Kansas State Veterinary Hospital which had positive stool samples of <u>S</u>. <u>typhi-murium</u> 2 weeks before the human cases occurred.

			TA	BLE I							
COMMON SALMONELLA	SEROTYPES	ISOLATED	FROM	HUMANS	IN	THE	UNITED	STATES	DURING	AUGUST,	1966

					_										_			_	_					_			_		_			_			
								(GEO	GRA	РН	ΙС	DIV	I S	I 0	N A	ND	R	EPO	RTI	L N G	С	EN	TER	t										
SEROTYPE		N	EW	ENGL	AND			MI	DDLE A	TLANTI	IC		EAS	ST NO	ORTH	CENT	AL			WEST	NORT	H CEN	TRAL					SOU	тн а	TLA	NTIC				SEROTYPE
	ME	NH	VT	ASS	RI	CONN	TOT	NY-A	NY-BI	NY-C	NJ P	A TOT	OHIO	IND	ILL	MICH	WIS	TOT	MINN	IOWA	MO N	D SD	NEBR	KAN	тот	DEL	MD I	DC V	A WV	NC	SC G	A F	LA	тот	
anatum bareilly berta blockley braenderup				5		1 2	6	2	2 4	3 1	1	1 <u>3</u> 2 7 5	2	4	5	2 2	2	7 4 8	1 2	1	1			1 3 2	3 1 3 5 2		2	1	2	1 4		6 3	3	9 12 1 6 4	anatum bareilly berta blockley braenderup
bredeney chester cholerae-suis v kun cubana derby				1 1 2			1	1 2	1 1	1	2 2	1 <u>5</u> 3 9	2	1	2 1 4	1	2	4 2 2 2 9	1	1	1				1		3		2	1		1	1	4 1 7	bredeney chester cholerae-suis v kun cubana derby
enteritidis give heidelberg indiana infantis	2			21 7 3		3 15	24 24 3	13 1 6 1 8	6 6 1	4 6 1 6	3 10 1	2 28 1 2 40 5 20	8 2 2	3 10 3	4 17 11	4 13 9	2 4 1	21 46 26	5 3 8	2	2	1		3 4 1	9 9 12		10 1 10 1 1	1	3 6 3	2 5 1 2	1	1	2	19 1 37 2 10	enteritidis give heidelberg indiana infantis
java javiana kentucky litchfield livingstone								1		2		3 <u>4</u> 1 <u>2</u> 2		1	6 1 1	2	2	9 1 4			1			1	1				2			2	4	6 5 2	java javiana kentucky litchfield livingstone
manhattan meleagridis miami mississippi montevideo				1		1	2	1	1	1	1	1 2	3	2	2 2	1	1	4	3	1	1				4		1	1	1			2 2 2	14	1 16 2 8	manhattan meleagridis miami mississippi montevideo
muenchen newington newport oranienburg panama				1 2		4	5		1	1 1 3 1 1	2	2 8 1 2 3	1 4 2 1	1 1	1 9 1	4 1 1	1	3 18 5 2	1 9 1	1	1 2 2	1	1	3 5 2	4 1 17 5 2	1	1		1	2		1 7 4	2 34 2	6 47 6 1	muenchen newington newport oranienburg panama
paratyphi B poona saint-paul san-diego schwarzengrund				1 1 3		1	1	1	2	1 2 1	1	1 6 1 1	1 2	1	3 1 1	3		2 9 1 2	5	2 3	1 1 1				8 4 1		3		1	1		3	4	1 11 1 5	paratyphi B poona saint-paul san-diego schwarzengrund
senftenberg tennessee thompson typhi typhi-murium	2		1	3 1 35	7	1 12	4	7 5 97	1 12	4 2 31	3 2 20 3	15 9 4 194	4 7 20	1 1 6	3 13 43	16 3 24	11 19	4 44 11 112	1	1 1 6	1 7	3		1 4 7	4 5 34	1	1 4 18	1 1	1 4 2	1 1 4 11	1	1 1 1 7	1	1 2 4 9 79	senftenberg tennessee thompson typhi typhi-murium
typhi-murium v cop urbana weltevreden worthington untypable, group B				3	1	1	4									5		5		1					1			7			3			10	typhi-murium v cop urbana weltevreden worthington untypable, group B
untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown					1		1																					1 3 1			1	1	-	1 1 3 3	untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown
Common Total	4	0	1	96	9	41	151	155	39	73	50 7	0 387	62	37	132	98	48	377	52	24	23	3 2	1	37	142	2	57	17 4	6 2	43	5 6	8 1	04	344	Common Total
Uncommon Total	2	0	0	1	0	0	3	4	0	0	0	3 7	1	0	5	4	0	10	2	0	0	0 0	0	1	3	3	0	1	0 0	2	0	4	10	20	Uncommon Total
Grand Total	6	0	1	97	9	41	154	159	39	73	50 7	3 394	63	37	137	102	48	387	54	24	23	3 2	1	38	145	5	57	18 4	6 2	45	5 7	2 1	14	364	Grand Total

New York (Albany, B-Beth Israel Hospital, C-City)

The Beth-Israel Salmonella Typing Center in New York is a reference Laboratory and processes many cultures from other states which are assigned to the respective states although reported by N.Y.-B.I. Beth Israel reported a total of 112 isolations for August.

TABLE I (Continued) COMMON SALMONELLA SERGTYPES ISOLATED FROM HUMANS IN THE UNITED STATES DURING AUGUST, 1966

	_										_									_	_		_										
					GE	0 G I	RAI	РНІ	с	DIV	IS	ΙO	N	ANI)	RE	POF	T I	E N G	CH	E N 1	T E R						% OF	1966	7. OF	1965	% OF	
SEROTYPE	ł	AST	SOUTH	CEN	TRAL	WE	ST SC	OUTH O	CENTR	AL				MOUN	TAIN							PACI	FIC			OTHER	TOTAL	TOTAL	TOTAL	CUM.	TOTAL	CUM.	SEROTYPE
	KY	TENN	ALA	MISS	тот	ARK	LA	OKLA	TEX	тот	MONT	IDA	WYO	COLO	NM	ARI	UTAH	NEV	TOT	WASH	ORE	CAL	ALAS	HAI	TOT	VI							
anatum bareilly berta blockley braenderup	2	2	2		2		4	1	24	2 4 5 1	1	1		1 2		1			2	2		1		5 1 1	6 1 9		40 24 4 53 14	1.7 1.0 .2 2.2 .6	213 46 25 410 66	1.6 .4 .2 3.2 .5	183 69 24 221 53	2.1	anatum bareilly berta blockley braenderup
bredeney chester cholerae-suis v kun cubana derby		1	1	1	1	1	6	1	2	10	1						1		2		2	4 2 2 12		5	4 4 3 17		20 13 3 11 52	.8 .5 .1 .5 2.2	85 80 18 106 255	.7 .6 .1 .8 2.0	89 79 1 23 1 105 467	3.6	bredeney chester cholerae-suís v kun cubana derby
enteritidis give heidelberg indiana infantis		1 2	5		6	1	1 6 4 2	1	2 6 4	1 8 11 8	1	1 1 1		1 7			1 2	1	2 5 9	2	1 2 2	2 2 11 15	1	15	3 2 -16 33		107 12 194 4 125	4.4 .5 8.1 .2 5.2	796 57 1,080 54 941	6.2 .4 8.4 .4 7.3	638 638 1,017 27 719	7.8 5.5	enteritidis give heidelberg indiana infantis
java javiana kentucky litchfield livingstone		1 1			1	9	1 7 2		10 1 1	1 26 3 1				1					1			5 1 2		4	5 1 2 4		27 37 5 9 5	1.1 1.5 .2 .4 .2	267 147 15 41 17	2.0	0 110 162 57 19	-	java javiana kentucky litchřield livingstone
manhattan meleagridis miami mississippi montevideo		1			1		2 3	1	2	2						1			1	1		2		1	4		17 19 4 44	.7 .8 .2 1.8	69 4 50 31 212	5 .0 .4 .2 1.6	5 73 0 135 55 2 22 5 303	2.3	manhattan meleagridis miami mississippi montevideo
muenchen newington newport oranienburg panama	7	3 1	3		13 1 1	13	2 1 8 1 6	3 1	2 30 2 2	4 1 54 4 8		1		2 1		1	1		1 4 1	1	1	2 1 12 4 1		7	2 1 20 4 14		22 4 186 30 31	.9 .2 7.7 1.2 1.3	135 31 772 273 168	6.0 2.1 3.1.3	0 130 2 39 0 698 1 376 3 147	5.3 2.9	muenchen newington newport oranienburg panama
paratyphi B poona saint-paul san-diego schwarzengrund		1			1	1	6 3	2	4 2 1 1	4 2 10 1 3	1	1		1 8		1	6 1		1 10 6 1	1 1 3	26 1	1 11 3		2	1 40 7		12 4 96 25 13	.5 .2 4.0 1.0 .5	104 25 499 96 44	.8 .2 3.9 .7	3 <u>116</u> 2 <u>32</u> 9 <u>487</u> 7 <u>197</u> 3 <u>77</u>	3.7	paratyphi B poona saint-paul san-diego schwarzengrund
senftenberg tennessee thompson typhi typhi-murium	8	1 18	6	2	1 34	3 4	2 3 8 10	1 18 4 6	3 1 36	3 24 16 56	17	3		1 16	6	1 1	3	1	1 8 40	77	1 4	1 2 15 54		6 19	1 2 22 154		5 98 82 760	.2 .2 4.1 3.4 31.6	39 86 411 473 3,649	3.2 3.7 3.7 28.5	3 40 7 137 2 340 7 487 5 4,086	2.6 3.7 31.3	senftenberg tennessee thompson typhi typhi-murium
typhi-murium v cop urbana weltevreden worthington untypable, group B			1	1	2	2	4		1 2	6 1 7		2			7				2		1	1	2	6 1	6 1 4		18 1 6 2 32	.8 .0 .2 .1 1.3	102 17 25 27 22	2 .8 7 .1 5 .2 7 .2 5 1.7	8 133 1 18 2 19 2 27 7 189		typhi-murium v cop urbana weltevreden worthington untypable, group B
untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown		1		4	1 4 1	3				3					5 3 3			1	5 3 3		1	1			1		9 11 7 7	.4 .5 .3 .3	68 33 34 48		5 52 3 40 2 29 0 45 4 86		untypable, group Cl untypable, group C2 untypable, group D untypable, group E untypable or unknown
Common Total	18	34	20	9	81	40	99	40	124	303	21	11	0	41	24	6	15	3	121	89	44	182	3	86	404	0	2,310	95.9	12,47	96.6	5		Common Total
Uncommon Total	3	1	0	0	4	0	19	1	7	27	0	0	0	1	0	0	0	0	1	1	2	15	0	5	23		98	4.1	440	3.4			Uncommon Total
Grand Total	21	35	20	9	85	40	118	41	131	330	21	11	-	42	24	6	15	3	122	90	46	197	3	91	427	0	2,408	100.0	12,915	5 100.0	13,067		Grand Total

TABLE II UNCOMMON SALMONELLA SEROTYPES ISOLATED FROM HUMANS DURING 1966

												R	EP	OR	ΤI	N G	CE	ΝТ	ER													
SEROTYPE	ALA	ALAS	ARI	ARK	CALIF	COLO	CONN	DEL	DC	FLA	GA	HAI	IDA	ILL	IND	IOWA	KAN	KY	LA	ME	MD	MASS	MICH	MINN	MISS	мо	MONT	NEBR	NEV	NH	ŊЈ	NM
aberdeen abortus-bovis agama alachua albany					1 1 2					2				2			1		1			2		1								
amager arkansas atlanta austín ball					2						1 10								1							1						
berlin binza boniare bonariensis bovis-morbificans		1			2 1 1					1				1				1	2				1	1							1	
bradford brandenburg california carrau cerro					2	2					1 2	2		1	1		1		2 3		1								6		1	
chailey cholerae-suís coleypark colorado concord					5	1				2									1			1										
corvallis daytona dublin duesseldorf duisburg					1 1					1				1					2													
eimsbuettel fayed gaminara garoli glostrup										2				1					5		1											
grumpensis habana haifa hartford ibadon					2				1	7	1			1					1			1	1	1							1	
inverness irumu kaapstad kottbus lanka					1	2 1								1										1								
loma-linda luciana madelia manchester menston						1				1					1		2															
minnesota mission mjimwema molade muenster			1		2					1				2		1			1												1	
nagoya new-brunswick new-haw newlands norwich	1	2		1	2	1	2			2	2				1				7		2	5	2	2								
ohio orion oritamerin os oslo					6							12					1		3													
paratyphi-A paratyphi-B v. odense paratyphi-C pomona pullorum					1	1								9					1 1		1		2			1						
reading rubislaw saphra sarajane seremban			1		12 2	2		3	2	1				16				4	8	2		1	3	2			1					
siegburg simsbury soahanima stanley stockholm					2					1				1 2					1			1	1									
sundsvall tallahassee virchow wassenaar welasco										2	1			1					1				3									
westerstede untypable group A untypable group G untypable group H untypable group O					2					2									1													1 2 1
Total	1	3	2	1	56	12	2	3	3	36	19	14	0	42	3	1	6	5	44	2	5	11	14	8	0	2	1	0	0	0	4	4

1

1

TABLE II (Continued) UNCOMMON SALMONELLA SEROTYPES ISOLATED FROM HUMANS DURING 1966

						RE	PO	RT	I	NG	С	EN	ΤE	R								AUC	1966	MONTH	STATE	TOTAL PREVIOUSLY	
NY-A	NY-BI	NY-C	NC	ND	OHIO	OKLA	ORE	PA	RI	SC 8	SD 1	TENN	TEX	UTAH	VT	VA	VI	WASH	wv	WIS	WYC	TOTAL	CUM. TOTAL	LAST REPORTED	LAST REPORTED	REPORTED TO SAL. SURV. UNIT 1962 - 1965	SEROTYPE
		1																				2	1 2 1 3 7	May 66 Jan 66 Jul 66 May 66 Aug 66	Cal Ill Kan Cal Cal-Mass	1 0 21 15	aberdeen abortus-bovis agama alachua albany
																						2	1 10 10 1 2	Jul 66 Jul 66 Aug 66 Feb 66 Jun 66	Ga La Ga Mo Cal	51 1 25 1 0	amager arkansas atlanta austín ball
1								21										2				2 4	2 10 1 1 8	Aug 66 Aug 66 Apr 66 Jun 66 Aug 66	Pa Cal-La-Pa Cal Ill Cal-Wash-Fla-Mich	0 54 0 2 44	berlin binza bonaire bonariensis bovis-morbificans
												2	1		1							2 1 1	4 1 9 4 7	Jul 66 Apr 66 Aug 66 Aug 66 Aug 66	Colo-NJ Ga Ga-La Tex Kan	2 10 64 12 28	bradford brandenburg californía carrau cerro
	3	1			1																	2	5 6 2 1 1	Aug 66 Jun 66 Aug 66 Feb 66 Jun 66	Cal NY-BI Fla La NY-C	1 66 0 8 4	chailey cholerae-suis coleypark colorado concord
		1			2													2				1 1 1	1 1 4 4	Aug 66 Jun 66 Aug 66 Feb 66 Aug 66	Ill Fla Cal NY-C Ohio	3 5 8 7 8	corvallis daytona dublin duesseldorf duisburg
1		1	2 5									1	1									2 2 1	6 5 6 1 2	Aug 66 Mar 66 Aug 66 Mar 66 Aug 66	NC NC La-Tex NY-C 111	3 6 20 0 1	eimsbuettel fayed gaminara garoli glostrup
		1			1	1							1			1				4		1 4	1 3 2 23 1	Apr 66 Jul 66 Aug 66 Aug 66 Jun 66	Va Mich-NYC Ga Fla-Mich Tex	11 0 3 90 0	grumpensis habana haifa hartford ibadon
4																						1	2 6 1 1 1	Aug 66 Jul 66 Mar 66 Aug 66 Apr 66	III NYA Colo NYA Cal	13 108 3 14 0	inverness irumu kaapstad kottbus lanka
						1																1	1 1 2 2	Jul 66 Jul 66 Aug 66 Jul 66 Jul 66	Okla Fla Fla Ind Kan	17 2 6 5 14	loma-linda luciana madelia manchester menston
1								5				2	1							1 1		1	4 3 1 1 15	Aug 66 Mar 66 Jan 66 Feb 66 Jun 66	Cal Fla NYA Wisc Fla-La	40 7 0 26	minnesota mission mjimwema molade muenster
3		1			1	1	2	1				3	1			2		4		1		4 7 3	1 37 7 1 13	May 66 Aug 66 Aug 66 Jun 66 Aug 66	Tex Mich-NYA La Colo La-Okla-Tenn	1 32 2 0 51	nagoya new-brunswick new-haw newlands norwich
		1			1 3																	6	7 3 1 3 17	Jun 66 Jul 66 Mar 66 Mar 66 Aug 66	Cal Ohio NYC La Cal-Hai	13 7 0 0 15	ohio orion orit amerin os oslo
																							2 2 1 2 10	May 66 Jul 66 Mar 66 May 66 May 66	Md Mich Colo Mo La	34 1 7 4 4	paratyphi-A paratyphi-B v. odense paratyphi-C pomona pullorum
6					2	1	15	b l				6	2 2					2		2		19 12 1	79 16 2 2 2	Aug 66 Aug 66 Aug 66 Jul 66 Aug 66	Cal-Colo-Del-Ill-Ky Me-Mich-Minn-Ore Fla-La-Tex Tex Ohio DC	102 42 19 1 0	reading rubislaw saphra sarajane seremban
			1		1							2	2									1	8 2 1 4 1	Jul 66 Jul 66 Aug 66 Jul 66 May 66	La Mass Tex Fla-Ill Ohio	19 16 0 26 0	siegburg simsbury soahanima stanley stockholm
			1				1						1									2	2 3 4 1 1	Aug 66 Jul 66 May 66 Apr 66 Jul 66	Ill-Tex Fla Ore La Ga	4 14 16 0 2	sundsvall tallabassee virchow wassenaar welasco
		1																					3 1 4 1 2	Jul 66 Jul 66 Jul 66 Jun 66 Jan 66	Fla NM NM Cal	5	westerstede untypable group A untypable group G untypable group H untypable group O
18	3	9	9	0	12	4	19	9	0	0	0	16	14	0	1	3	0	10	0	9	0	98	440				Total

TABLE III

Age and Sex Distribution of Individuals Reported as Harboring Salmonellae During August 1966

Age (Years)	Male	Female	Unknown	<u>Total</u>	_%	Cumulative %
Under 1	145	108	5	258	16.0	16.0
1 - 4	183	145		328	20.4	36.4
5 - 9	95	84		179	11.1	47.5
10 - 19	91	96		187	11.6	59.1
20 - 29	74	86	1	161	10.0	69.1
30 - 39	46	77	1	124	7.7	76.8
40 - 49	52	61		113	7.0	83.8
50 - 59	30	65		95	5.9	89.7
60 - 69	38	57		95	5.9	95.6
70 - 79	18	32		50	3.1	98.7
80 +	7	13		20	1.2	99.9
Child (Unspec.)	21	9	1	31		
Adult (Unspec.)	16	30	1	47		
Unknown	309	351	60	720		
Total	1125	1214	69	2408		
% of Total	48.1	51.9				

	ken	ey		ken droppings	ry	u	ne	ne	Inc	anímal ronment		ne	ít.	mouse		al unknown		albumen ered ess	en egg	shell	ken meat	age ered milk	cream	to salad	les slaw	L	ed fish	try feed	stock feed meal/	scraps	al feed, own	me a l	al protein	age	le monster	ge	r water	ing knife	ory environ- al water	ory environ- al swab	ronmental		stock cultures	reatin powder	ine dye	own				
SEROTYPE	chic	turk	duck	chic	cana	avai	equí	bovi	porc	farm	goat	feli	rabb	willd	mink	aním	e 88	e 88	froz	e 88	chic	saus	ice	pota	cole	yeas	smok	poul	bone	meat	unkn	fish	anim meal	tank	gila	seva	rive	pinn	fact ment	fact	envi	seve	lab	panc	carm	unkn	Total	8 MOS. TOTAL	SERO	TYPE
lachua ilbany inatum pareilly pinza	1 1 4	18 2									1												8						3 2 2 2	2 2	2 1 1		1			7	1					3	6		L	1 1 1	6 1 48 12 8	23 1 253 23 44	alachua albany anatum bareill binza	у
olockley oovis-morbificans oredney alifornia cerro	8 3 1	8 1 1				2			1						1		1		2		4				3					1	2			1 5		1		1					2			1	24 2 9 3 14	142 3 45 24 46	blockle bovis-m bredney califor cerro	y orbificans nia
hester cholerae-suis cholerae-suis v kun cubana lerby	2	13			1				27				1				1					1	a			19		1	3 2		2	1				4				1		1	4		1	1	17 2 7 19 38	93 3 68 71 122	chester cholera cholera cubana derby	e-suis e-suis v ku
ublin timsbuettel enteritidis gaminara give	34	1 1 2				1		1	1			1											2					1 1	D	1	6					4						2					1 31 6 1 5	32 84 73 2 33	dublin eimsbue enterit gaminar give	ttel idis a
grumpensis neidelberg Indiana Infantis java	21 14	43 7 2	1		2				2								3	3 3	4								3		1		1					1		1		1	2		1			2	1 78 8 34 4	5 446 32 207 38	grumpen heidelb indiana infanti java	sis erg s
kentucky livingstone madelia manhattan manila		3																					1						1		3 1		1			1		1		1			1				9 3 1 1	24 63 2 31 3	kentuck livings madelia manhatt manila	y tone an
meleagridis minnesota montevideo menchen new-brunswick	5	2				1		1	1														2					1	0	2	2		1	1	1	1										4	1 4 28 47 1	12 36 217 47 77	meleagr minnesc montevi muenche new-bru	idis ta deo n mswick
newington newport norwich oranienburg anama	2	1 1 4						2		1			1		1		2 5						23						5	1 1	3		1		1	3	1	2					1	1	2	1	6 25 2 20 6	54 94 4 145 15	newingt newport norwich oranier panama	ion burg
ullorum ubislaw aint-paul an-diego chwarzengrund	5 4 1	10 3 44						2	1			1					1		2										2		1																7 1 25 4 47	48 4 206 75 154	pulloru rubisla saint-p san-die schwarz	im Saul 190 Sengrund
eenftenberg eremban siegburg aksony eddington		10						1				1											1					2	1														1			2	22 1 1 1	123 1 4 4 1	senfter seremba siegbun taksony tedding	nberg in '8 / ton
ennessee homasville hompson yphi-murium yphi-murium v cop	5 55 12	2 1 10 6	1 2 5	1	1	1	6 1 1	1	1 1 1 2			1 1		1	2		2		3		11	3	1	2	2				3 2 1	1					1				3	2		1	1 1		2	2	44 3 38 122 30	139 24 143 619 147	tenness thomasy thompso typhi- typhi-	ee ville on murium murium v cop
orbana Aorthington Intypable group K Inknown	1																	2	12	1									6	1 2	2 1																11 3 13	9 53 4 24	urbana worthin untypal unknow	ngton ble group K
otal	152	201	1 8	1	1 4	6	7 2	3 1	21	1	1	7 2	1 1	1	3 1		8 9	3 5	32	1	15	1 5	7 2	2 2	5 1	19	3	46	1	15	29	1	4	7	4 1	25	2	4 1	3	6	2	7	1 25	1	5 1	18	863	4,747	Total	_

TABLE IV REPORTED NONHUMAN ISOLATES BY SEROTYPE AND SOURCE, *AUGUST, 1966

Source: National Animal Disease Laboratory, Ames, Iowa, Weekly Salmonella Surveillance Reports from Individual States, and USFDA, Division of Microbiology, Washington, D.C.

*Includes July late reports.

			TAI	BLE V					
REPORTED	NONHUMAN	ISOLATES	BY	SEROTYPE	AND	STATE,	*	AUGUST,	1966

			-	_																-		_					_	T	-				_			_	T	0 1000	
SEROTYPE	ALA	ARK	CAL	CONN	DC	GA	IDA	ILL	IND	IOWA	KAN	KY	LA	DM	ASS	MICH	MINN	MIS	SS M	0 M	ONT	NEB	NJ	Y-A	NC	OHIO	OKLA	ORE	PA	SC	TEX	UTAH	VA	ASH	W.VA	WIEC	TOTAL	8 MOS. TOTAL	SEROTYPE
alachua albany anatum bareilly binza		1	4		2	1	1	1	5	1		2	13 2 2				10 2 2		1	2		6	6			3					1	1	1		1		6 1 48 12 8	23 1 253 23 44	alachua albany anatum bareilly binza
blockley bovis-morbificans bredney california cerro		1	3	2	2	1		1	1	1			1 1	1			1	2	1 2	6			2							1				5		1	24 2 9 3 14	142 3 45 24 46	blockley bovis-morbificans bredney california cerro
chester cholerae-suis cholerae-suis v kun cubana derby	1	1	21		1			1	1	4		3	3 7		1		1	2	2	3		1	3				2			1	1			9		8 1 19	17 2 7 19 38	93 3 68 71 122	chester cholerae-suis cholerae-suis v kun cubana derby
dublin eimsbuettel enteritidis gaminara give		2	1			1		1 1 1	3 4 1	1			16	1					2								2				4	1	1				1 31 6 1 5	32 84 73 2 33	dublin eimsbuettel enteritidis gaminara give
grumpensis heidelberg indiana infantis java		3	2	1		21 1			2 5 1	3			1				33	3	1	4 3 8		1	2	3		1		1	1			3		2		4	1 78 8 34 4	5 446 32 207 38	grumpensis heidelberg indiana infantis java
kentucky livingstone madelia manhattan manila			1					2					2				1	3					1			1					2						9 3 1 1 1	24 63 2 31 3	kentucky livingstone madelia manhattan manila
meleagridis minnesota montevideo muenchen new-brunswick						3		2	1	1			1 11			1		141	1	1		1	1		1	1 2									2		1 4 28 1 1	12 36 217 47 77	meleagridis minnesota montevideo muenchen new-brunswick
newington newport norwich oranienburg panama		6	2		5		1	1	1	3			3 6	1		1	1	1		2		2 5 1	8	3			2				2	1	1			1	6 25 2 20 6	54 94 4 145 15	newington newport norwich oranienburg panama
pullorum rubislaw saint-paul san-diego schwarzengrund			1 41			2		1	22		1		2			1		4		2		1						4	1			1		5 1		3 3 2	7 1 25 4 47	48 4 206 75 154	pullorum rubislaw saint-paul san-diego schwarzengrund
senftenberg seremban siegburg taksony teddington			3					1			1		5 1 1	1				9	1				1													1	22 1 1 1 1	123 1 4 4 1	senftenberg seremban siegburg taksony teddington
tennessee thomasville thompson typhi-murium typhi-murium v cop		2	1 15	40	2	6		2 22 1	5 3 12 2		1 2	2	3 2 2	9 1 1 3		47	2	2 1 1 3		1 7 2	2		6 1	3	1			1	4		1			3 19		1 1 2	44 3 38 122 30	139 24 143 619 147	tennessee thomasville thompson typhi-murium typhi-murium v cop
urbana worthington untypable group K unknown		1						1	3	1			6							2			12	1							1						1 11 3 13	9 53 4 24	urbana worthington untypable group K unknown
Total	1	24	86	46	12	37	2	40	61	16	5	7	93	18	1	14	11	5	12 4	5	2	18	45	10	2	8	6	8	6	2	14	11	3	44	1	48	863	4,747	Total

Source: National Animal Disease Laboratory, Ames, Iowa, Weekly Salmonella Surveillance Reports from Individual States and USFDA Div. of Microbiology, Washington, D.C.

*Includes July late reports.

NYA = New York - Albany

TABLE VI OTHER SEROTYPES REPORTED DURING 1966 FROM NONHUMAN SOURCES

SEROTYPE	MONTH(S)	REPORTING CENTER(S)	NUMBER OF ISOLATIONS
abortus-bovis adelaide alagbon amagar amsterdam	Mar Mar Mar May-Jul Jan	La La NJ Ark Ohio	1 1 2 2 1
babelsberg berta birmingham bradford braenderup	Jan Feb May Jun Jan Jan Jan Feb Feb Mar Apr-Jul	Ind Ga(2) Calif(1) La NJ Ark(4) Calif(1) Miss(1) Ala(1) Tex(1) Va(1) Conn(6)	1 3 1 1
cambridge caracus carrau champaign colorado	Apr Mar Apr Mar Mar	La La Mass La NJ	1 1 2 2 1
corvallis drypool emek eppendorf fayed	Apr-Jun Jun Jul Jan Apr Apr	La La Tex NJ La(1) NC(1)	2 2 1 1 2
gallinarum habana halmstad hamilton hartford	Jan-Mar Feb-Jul Feb Feb Mar May Jul Apr Mar-Jul Jan Mar	Tex(2) Calif(2) Minn(1) Pa(2) Wisc(1) Va(1) Ala(1) Ark(1) Md La La Fla	11 1 4 1 1

TABLE VI(Continued) OTHER SEROTYPES REPORTED DURING 1966 FROM NONHUMAN SOURCES

SEROTYPE	MONTH(S)	REPORTING CENTER(S)	NUMBER OF ISOLATIONS
illinois javiana johannesburg kaapstad kottbus	Mar Jun Jul Jul Mar Mar Feb	Minn(1) La(1) Calif(2) Calif Mich La Ga	4 1 1 1 1
lexington lille litchfield	Jan Mar-May Mar May Jun Mar Apr May-Jun-Jul	Calif(1) La(3) NJ(2) Minn(1) Wisc(1) NJ Calif(1) Fla(13)	8 1
miami mikawashima	May May Jul Jul Feb Feb Jul Jul Jul	Ga(1) Kan(2) Ohio(1) Wash(1) Calif(1) Tex(1) Fla(1) Wash(1) Ind	19 4 2
minneapolis mission mississippi muenster	May Mar May Mar Mar Mar-Apr-May-Jun Apr Apr May Jun Jun	Calif Ohio(1) La(1) La Ala(1) La(9) Calif(1) Fla(1) Miss(1) Ga(1) Mo(1)	1 2 1
new-haw	Jul Mar	Wash(1) NJ	16 1

TABLE VI (Continued) OTHER SEROTYPES REPORTED DURING 1966 FROM NONHUMAN SOURCES

SEROTYPE	MONTH(S)	REPORTING CENTER(S)	NUMBER OF ISOLATIONS
ohio orion	Feb Feb Jun Jun Jan Jan Feb	Iowa(7) Minn(1) NJ(1) NYA(1) Miss(4) Ohio(1) Wisc(2)	10
oslo paratyphi-B	Mar Apr May-Jun Jul Jan-Mar-May Mar Mar Apr-May Jul Jan	<pre>I11(1) Ind(1) La(2) Minn(1) Calif Md(1) Tex(1) Ohio(3) Minn(1) Mich</pre>	12 5 6
	Jan	men	1
pomona poona portland reading simsbury	Mar Mar-May-Jun Mar May Jun Jul Feb-Mar-May Feb Mar-Apr-Jun-Jul May May Jun Jun Jun Jun Jun Feb-Mar-Jun Mar	NJ Calif(4) Md(1) La(1) Ga(1) Wash Calif(5) Utah(1) Ore(12) Minn(2) SD(1) Ind(1) Iowa(1) Wisc(1) Ind(1) Calif(4) NJ(1)	1 7 1 24 6
stockholm tournai tuebinger typhi typhi-suis	May Mar Jan Jan Feb-Mar Mar	Ohio NJ Mich Mo Calif(6) Minn(1)	1 1 1 1 7
vejle westhampton	Apr Mar	La Kan	1 1
TOTAL			210

AVERAGE NUMBER OF ISOLATIONS PER WEEK
